Node Document


The Implementation of Fast Mosaic for UAV Remote Sensing Images with Geographic Information

【Author in Chinese】 杜丹潘志斌于君娜刘春华路瑜亮

【Author】 DU Dan;PAN Zhi-bin;YU Jun -na;LIU Chun-hua;LU Yu-liang;School of Electronic and Information Engineering,Xi’an Jiao Tong University;General Armament Department Beijing Military Representatives Bureau in Shijiazhuang Region;The 54th Research Institute of CETC;

【Institution】 西安交通大学电子与信息工程学院总装北京军代局驻石家庄地区军代室中国电子科技集团公司第五十四研究所

【Abstract in Chinese】 为了扩大视场范围,更好地利用无人机遥感图像和定位数据,针对现有的基于特征的图像拼接算法较慢以及无法提供地理信息的问题,实现了一种带地理信息的无人机遥感图像的快速拼接系统。考虑无人机在单航带内垂直下视的拍摄条件,对几何校正模型进行了化简,采用了尺度不变特征变换(Scale Invariant Feature Transform,SFIT)方法配准图像序列,利用GDAL开源库和地理信息快速拼接航带内的遥感图像。实验表明,该系统能够满足实际工作的需要,为不同航带间和摆扫拍摄条件下的遥感图像拼接打下了基础。

【Abstract】 Current UAV remote sensing images mosaicking methods face serious challenges such as high computational cost and lack geographic information. We achieve a fast mosaicking system with geographic information in order to expand the field of view and make a better use of UAV images and positioning data. Considering the shooting conditions in single strip,we simplify the geometric correction model. SIFT algorithm is used for registration image sequences. Using GADL database and the geographic information,we complete the fast mosaic of remote sensing images. Test results show that this system can satisfy actual requriement. Furthermore,it lays a foundation for images mosaic in sweeping shooting conditions and between different flight strips.

【Keywords in Chinese】 无人机遥感图像SIFT拼接地理信息
【Key words】 UAVremote sensing imageSIFTmosaicgeographic information
【Fund】 国家部委基金资助项目
  • 【CLC code】TP751
  • 【Downloads】219
Snapshot search of full-text: 

Knowledge network:

Citation network of current document
live chat
live chat